
Guide for Dynamic CSS

(version 3.5)

Kepler Gelotte
Neighbor Webmaster

Kepler@neighborwebmaster.com

Page 1 of 17

http://www.neighborwebmaster.com/

Contents

Guide for Dynamic CSS..1
Contents...2
What’s New in this Release...3

Release 3.5...3
Release 3.1...3
Release 3.0...3
Release 2.9...3
Release 2.8...3
Release 2.7...3
Release 2.6...3

Introduction..5
Tips and Usage...6
Customizing...7
Running the script from the command line..8
@include..9
Variables..10
Using PHP Variables...12
Expressions..14
Conditional Logic..15
Modifying Headers..16
Automatic Background Image Conversion..17

Page 2 of 17

What’s New in this Release

Release 3.5

 Consolidate filter to one file by using apache mod_rewrite instead of mod_mime.
 Fixed handling of passed boolean variables (e.g. debug=false).
 Support command line testing.
 Removed old IE version testing.

Release 3.1

 Allow @include of web files.

Release 3.0

 Set variables so the eval and the conditional clauses (if, elseif) no longer need to
quote strings. This allows for inline turning on/off switches like $debug.

 Cleaned up formatting of the CSS when compress=false.
 Automatically create cache directory if it doesn’t exist and make it writable.
 Removed javascript code since it is only adding an expires header.

Release 2.9

 Created a better PNG -> GIF conversion algorithm.
 Added matte-color statement to get better alpha transparency when converting from

PNG -> GIF.

Release 2.8

 Fixed a bug when escaping the end-of-line when setting variables on Unix-based
systems. It works now for both Unix end-of-line and Windows end-of-line (“\r\n”).

 Added the $filter_sizing_method parameter. It defaults to ‘scale’ and is used for the
Microsoft alpha filter. Valid values are ‘crop’, ‘image’, and ‘scale’. The filter
substitution requires browser sniffing and is therefore not reliable however.

 Fixed a bug where passed parameters were not overriding the system variables.

Release 2.7

 Added dependency checking when caching. The code now keeps track of
“@include”d files and will refresh the cached CSS file if any of the dependent files is
updated.

Release 2.6

 Added a $cache global. If set to true, processed CSS files are saved to a subdirectory
called cache. Timestamps are checked on the requested CSS file to see if the cache is
stale. No timestamp check is done on any @included files.

Page 3 of 17

 Allow for escaping of semicolons. This is useful when setting variables and you need
to include a semicolon in the value. Previously it would have signaled an end of line,
with or without the escape character (\).

 Allow for escaping the end-of-line with a backslash (\). This allows you to split a
command over multiple lines. This can help readability and will be removed in the
processed result.

 Debug comments are no longer compressed away even when
$compress_comments=true.

Page 4 of 17

Introduction

 “Why do I need another dynamic CSS language when there is LESS and SASS?”.

The simple answer to this is that each require a compile step to be initiated outside of
your work environment. Some clever people have created daemon processes that detect
changes and automatically recompile, however you need to make sure it is running and
also there can be a delay. The approach of this library is to have the compile step happen
when the request is made to the server for the CSS file. It doesn’t require you to set up a
daemon process on your local environment (and destination server if you make quick
fixes on the server). Caching speeds up subsequent CSS requests so compiles happen
only when needed.

Another advantage is the syntax is made to resemble PHP as much as possible. The
syntax is simple and allows for an easy learning curve. I personally think some of the
features of LESS and SASS overly complicate CSS development with things like mixins,
etc.

This library is another option you can add to your toolkit (or not). It is open source and
free to use and modify if you desire. I hope you find it as useful as I have.

Page 5 of 17

Tips and Usage
 Place these two files in any directory or subdirectory containing CSS that you want to

use the enhanced functionality in:
css/.htaccess
css/css-filter.php

 If you have your CSS files spread across a hierarchy of folders as in:
css/main.css
css/theme/blue-sky/theme.css
…

you need the files in both directories to use the enhanced functionality in both css files.

  IMPORTANT: create a cache directory under every css directory containing the
script. This directory needs to be writable to world. In Linux the commands to create the
cache directory are:

cd <directory where you installed the above files>
mkdir cache
chmod 777 cache

The script will try to create the cache directory if it doesn’t exist but will most likely fail
because of permissions.

 You don’t need to modify any of your existing CSS, JavaScript, or image files to use
these scripts.

 When using the expanded syntax for CSS below, statements must be separated by either
a new line and/or a semicolon (;).

 These scripts set the expires header to 1 year by default. To force a download of a
modified CSS, JavaScript, or image file you may need to either clear your browser cache
or add a parameter as in:

<link type=“text/css” rel=“stylesheet” src=“css/main.css?version=1.1” />
-or-

<link type=“text/css” rel=“stylesheet” src=“css/main_1_1.css” />

 When debugging, add “?debug=true” to the end of your CSS URL. All debug messages
are put into the CSS as comments. Here is an example:

<link type=“text/css” rel=“stylesheet” src=“css/main.css?degug=true” />

Page 6 of 17

Customizing
At the top of css-filter-start.php script are variables that control the behavior of the
Dynamic CSS replacement. Here is a description of the current variables:

$debug – setting to true will output debug comments of the form /* debug */ in
the output CSS. This setting is useful if trying to debug an issue with this filter. The
default is false.

$cache – setting to true will save the processed output to a subdirectory called
cache. If the directory does not exist it will be created. Subsequent requests will return
the cached file for the CSS file with the same parameters passed. This is to improve
performance.The default is true.

$allow_eol_comments – if set to true, will allow comments starting with // and
run to the end of line. The default is true.

$compress – if set to true will remove extra whitespace. It will leave a newline
after each definition (after each } curly brace) for readability.The default is true.

$compress_comments – removes all comments (regular and end-of-line if
enabled).The default is true.

$handle_pngs – will add the alpha filter if the browser’s UserAgent identifies
itself as IE5.5/IE6. For older versions of IE the .png will be replaced with .gif or ..png8
(see $convert_to_png8). If the .gif or .png8 file doesn’t exist, it will be created on the
server as long as you have the GD2 image library installed on your server. The default is
true.

$use_alpha_filter – if you want to use Internet Explorer’s alpha filter for versions
IE5.5/IE6. If you would rather replace the .png with a .gif/.png8 the set this value to false.
The default is false.

$filter_sizing_method – if you want the filter to crop the image to fit the
dimensions of the container use ‘crop’. To have the image resize to fit the dimensions use
‘scale’. To leave the image alone with an expanding border as needed use ‘image’. The
default is ‘scale’.

$convert_to_png8 – png8 is an indexed 8 bit color version of the PNG format. It
is similar to GIF and displays with transparency in older browsers. It does not support
alpha transparency though. The default is true.

 You can override these settings by passing the parameters on the CSS URL set as true▪
or false. For example:

<link type=“text/css” rel=“stylesheet” src=“css/main.css?compress_comments=false” />

Page 7 of 17

Running the script from the command line

To check your css without going through an apache server you can just use the following:

php css-filter.php <your css file> [<param1=value1> [<param2=value2> ...]]

So to test the following link:

<link type=“text/css” src=“css/main.css?theme=blue&country=us” />

From the command line you would run the following in the css directory:

php css-filter.php main.css theme=blue country=us

The output will be sent to your screen and if the cache directory is writable a copy will be
saved there as 'main.css_theme=blue_country=us'.

Page 8 of 17

@include
@include ‘file.css’ [;]
@include url(‘file.css’) [;]

Both forms are equivalent. The syntax mimics the @import command.
This command is like @import except it includes the CSS on the server. The @include
may also be on any line within your CSS file. The text from the included CSS file will be
added in place. You can nest @includes as well.

main.css:

body {
color: #000;
background-color: #CCC;
@include ‘includes/second.css’

}

includes/second.css:

@include ‘includes/third.css’
padding: $padding;

includes/third.css:

text-decoration: none;
set $padding = 5em;

Will send the following to the browser when main.css is requested:

body {
color: #000;
background-color: #CCC;
padding: 5em;
text-decoration: none;

}

Page 9 of 17

Variables
set name = value [;]
eval name = expression [;]

All variables are treated as PHP string variables. Variables can be surrounded with quotes
but the quotes will be removed when the value is substituted. If you need surrounding
quotes (this does not include internal quotes), add an extra set of quotes. For example:

set font-family = “Courier New”, Courier, monotype;
font-family: $font-family; // OK – quotes will not be stripped

set main-font = “Courier New”;
font-family: $main-font, Courier, monotype; // NOT OK – quotes will be stripped

set main-font = ‘“Courier New”’;
font-family: $main-font, Courier, monotype; // OK – quotes will not be stripped

Use the set command to set a static string to a variable. Use the eval command to assign
the output of the expression to a variable. The eval command is a good way to bridge to
PHP since PHP’s variables like $_GET, $_POST, $_REQUEST, $_SERVER,
$_COOKIES are not directly usable as variables in the CSS file.

The optional semicolon at the end of the set and eval statements will be removed.

Variables can be delimited with curly brackets to avoid ambiguity in your CSS. Here is
an example of using delimited variables to avoid ambiguity:

set margin = 20px;
set margin-left = 10px;

#main {
margin: $margin;
margin-left: ${margin-left}; // to avoid expanding to 20px-left;

}

Variables can be added anywhere in the CSS and will be expanded when output. Here are
some examples of setting a variable:

set default-color = #0fd98e;
set color = $default-color;

div.side { color: $color; } // color: #0fd98e;
An example setting a variable based on the output from a PHP eval():

Page 10 of 17

eval user_agent = $_SERVER[‘HTTP_USER_AGENT’];
if (strstr($user_agent, ‘Mac’) !== false)

// Dynamic behavior like this should be avoided because of caching.
// A better approach would be to pass the dynamic variable on
// the css <link/> as an argument:
// href=“main.css?user_agent=<?=$_SERVER[‘HTTP_USER_AGENT’]?>”

endif

// A more practical example
set width = 1000;
set number-of-sections = 4;

// note the delimiters are needed on the second variable since the ‘-‘ would be
// evaluated as a minus sign otherwise.
eval section-width = $width / ${number-of-sections};

#section-1 {
width: ${section-width}px; // need delimiters here to avoid ambiguity

}
#section-2 {

width: ${section-width}px;
}
#section-3 {

width: ${section-width}px;
}
#section-4 {

width: ${section-width}px;
}

Page 11 of 17

Using PHP Variables

Passing variables to CSS:

<link type=“text/css” rel=“stylesheet” src=“css/main.css?theme=blue” />

Passed variables are added to the variables available within the CSS file. It also has the
added advantage of creating a separate cache file which avoids the problem mentioned in
the previous section.

main.css:

#main {
if ($theme == ‘blue’)

color: white;
background-color: blue;

else
color: black;
background-color: white;

endif
}

PHP has global variables defined (see PHP documentation for more details):
$_SERVER
$_GET
$_POST
$_FILES
$_REQUEST
$_SESSION
$_ENV
$_COOKIE

You can access these variables in conditionals and using eval. Caution be used when
accessing PHP’s predefined variables especially due to the caching issues. Variables and
variable substitution are not handled by PHP so the following will not work:

body
{

background-color: $_COOKIE['background_color'];
color: $_COOKIE['color'];
font: normal 75%/1.3em Verdana, Geneva, Helvetica, sans-serif;
text-align: center;

}

Page 12 of 17

http://php.net/manual/en/reserved.variables.cookies.php
http://php.net/manual/en/reserved.variables.environment.php
http://php.net/manual/en/reserved.variables.session.php
http://php.net/manual/en/reserved.variables.request.php
http://php.net/manual/en/reserved.variables.files.php
http://php.net/manual/en/reserved.variables.post.php
http://php.net/manual/en/reserved.variables.get.php
http://php.net/manual/en/reserved.variables.server.php

By setting a variable using the eval command, the following will work:

eval background_color = $_COOKIE['background_color'];
eval color = $_COOKIE['color'];
body
{

background-color: $background_color;
color: $color;
font: normal 75%/1.3em Verdana, Geneva, Helvetica, sans-serif;
text-align: center;

}

Since expression are evaluated using PHP, you can use the server variables in if and
elif /elseif expressions:

body
{
if ($_COOKIE[‘theme’] == ‘blue’)

color: #FFF;
background-color: #03C;

else
color: #000;
background-color: #CCC;

endif
}

Note that surrounding quotes are necessary for user defined variables in expressions
but not for PHP server variables in expressions. For the above example the following 2 if
clauses would work while the third would fail:

if ($_COOKIE[‘theme’] == ‘blue’) // OK
if (‘$color’ == ‘blue’) // OK
if ($color == ‘blue’) // FAIL

set quoted_color = “’$color’”;
if ($quoted_color == ‘blue’) // OK

Page 13 of 17

Expressions
eval expression [;]
eval variable = expression [;]
if (expression) [;]
elseif (expression) [;]
elif (expression) [;]

Expressions are evaluated using PHP. This means you have the full PHP syntax available
to you in these statements.

The first form of the eval command passes off the expression to PHP for execution but
ignores any result. The second form not only passes an expression off to the PHP engine
for evaluation but also assigns any returned value to variable cast as a string.

Delimitted variables (surrounded by {}) are substituted first. This means variables behave
differently when used in expressions depending if they are delimited or not. Expressions
are then passed to PHP for evaluation. Conditionals (if, elseif) have the return result cast
to a boolean.

Here are some examples:

set valid_php_variable = #FCDEFA;
set valid_php_variable_2 = ‘not good’;

if ($valid_php_variable == ‘#FCDEFA’)
// OK – expression evaluates to true

endif

if (${valid_php_variable_2} == ‘not good’)
// OK – delimited variable substitution made first

endif

if ($valid_php_variable_2 == ‘not good’)
// FAILS – substitutes $valid_php_variable first
// results in (‘#FCDEFA’_2 == ‘not good’)

endif

eval bad_result = $valid_php_variable_2; // = ‘#FCDEFA_2’

eval good_result = ${valid_php_variable_2} . ‘ - great!’; // = ‘not good – great! ‘

Page 14 of 17

Conditional Logic
if (expression) [;]
elif (expression) [;] –or– elseif (expression) [;]
else [;]
endif [;]

Conditional logic works similar to most languages. elif and elseif are the same function,
use whichever is you feel more comfortable with.

Here is an example:

set default_color = #FCDEFA;
set default_background_color = #1D3C66;

body {
if ($theme == ‘dark’)

color: #999; background-color: #000;
elseif ($theme == ‘light’)

color: #000; background-color: #FFF;
else

color: $default_color; background_color: $default_background_color;
endif
}

Theme in this case could be set at the top of the CSS file or passed in on the HTML as a
parameter:

<link href=”main.css?theme=dark" rel="stylesheet" type="text/css" />

You can also nest if/elseif/else logic as deep as you like. Just be sure to terminate each
nested if with and endif.

// The following outputs: color: #green;
if true
 if false
 color: #red;
 else
 color: #green;
 endif
else
 color: #orange;
endif

Page 15 of 17

Modifying Headers
set-header header_information [;]
expires

immediate | yesterday
now
n minute[s]
n hour[s]
n day[s]
n week[s]
n month[s] (approximate)
n year[s]

You can modify any header sent to the browser using the first form. An example using
variable substitution and conditional logic:

eval agent = $_SERVER[‘HTTP_USER_AGENT’];
set header = Vary: Accept-Encoding;
if (stristr(‘$agent’, ‘msie’) !== false)

set-header $header;
endif

The expires command sets the expiration of the CSS file. This tells the browser when to
next download this file. Note if you set a far expires date (e.g. expires 1 year), you cannot
force a refresh by setting an expires immediate. This is because the browser may not even
request that CSS file until it expires (e.g. a year later).

Page 16 of 17

Automatic Background Image Conversion

Any background image that uses a png image will be either converted to a gif or png-8
depending on the setting of $convert_to_png8. If the corresponding gif/png8 file does not
exist, a new image will be created from the background png image. The directory where
your background images reside must be writable for this to work. You also should turn
off caching when testing as the conversion won’t take place if the CSS file has been
cached.

The matte color (for areas where there is alpha transparency) defaults to #fff. If you have
a different color background, you can set the matte color using the following syntax:

matte-color: #{3 hex color code} | #{6 hex color code} [;]

Here is an example:

matte-color: #ab90ff;
background: url(‘../images/xyz.png’) 0 0 no-repeat;
…

The matte color will be used from then on for all further conversions so you don’t need to
keep reissuing the command before all background images. If your matte changes, then
of course you need to reissue the matte-color command with the new value.

Page 17 of 17

	Guide for Dynamic CSS
	Contents
	What’s New in this Release
	Release 3.5
	Release 3.1
	Release 3.0
	Release 2.9
	Release 2.8
	Release 2.7
	Release 2.6

	Introduction
	Tips and Usage
	Customizing
	Running the script from the command line
	@include
	Variables
	Using PHP Variables
	Expressions
	Conditional Logic
	Modifying Headers
	Automatic Background Image Conversion

