
Page 1 of 17

Guide for Dynamic CSS

(version 3.1)

Kepler Gelotte
Neighbor Webmaster

Kepler@neighborwebmaster.com

http://www.neighborwebmaster.com/

Page 2 of 17

Contents

Guide for Dynamic CSS ... 1
Contents .. 2
What’s New in this Release .. 3

Release 3.0 .. 3
Release 2.9 .. 3
Release 2.8 .. 3
Release 2.7 .. 3
Release 2.6 .. 3

Introduction ... 5
Tips and Usage .. 6

Customizing .. 8
@include ... 9
Variables ... 10
Using PHP Variables .. 12

Expressions ... 14
Conditional Logic ... 15

Modifying Headers ... 16
Automatic Background Image Conversion for IE6 .. 17

Page 3 of 17

What’s New in this Release

Release 3.1

• Allow @include of web files.

Release 3.0

• Set variables so the eval and the conditional clauses (if, elseif) no longer need to

quote strings. This allows for inline turning on/off switches like $debug.

• Cleaned up formatting of the CSS when compress=false.

• Automatically create cache directory if it doesn’t exist and make it writable.

• Removed javascript code since it is only adding an expires header.

Release 2.9

• Created a better PNG -> GIF conversion algorithm.

• Added matte-color statement to get better alpha transparency when converting from

PNG -> GIF.

Release 2.8

• Fixed a bug when escaping the end-of-line when setting variables on Unix-based

systems. It works now for both Unix end-of-line and Windows end-of-line (“\r\n”).

• Added the $filter_sizing_method parameter. It defaults to ‘scale’ and is used for the

Microsoft alpha filter. Valid values are ‘crop’, ‘image’, and ‘scale’. The filter

substitution requires browser sniffing and is therefore not reliable however.

• Fixed a bug where passed parameters were not overriding the system variables.

Release 2.7

• Added dependency checking when caching. The code now keeps track of

“@include”d files and will refresh the cached CSS file if any of the dependent files is

updated.

Release 2.6

• Added a $cache global. If set to true, processed CSS files are saved to a subdirectory

called cache. Timestamps are checked on the requested CSS file to see if the cache is

stale. No timestamp check is done on any @included files.

• Allow for escaping of semicolons. This is useful when setting variables and you need

to include a semicolon in the value. Previously it would have signaled an end of line,

with or without the escape character (\).

• Allow for escaping the end-of-line with a backslash (\). This allows you to split a

command over multiple lines. This can help readability and will be removed in the

processed result.

Page 4 of 17

• Debug comments are no longer compressed away even when

$compress_comments=true.

Page 5 of 17

Introduction

 “Why do I need another dynamic CSS language when there is LESS and SASS?”.

The simple answer to this is that each require a compile step to be initiated outside of

your work environment. Some clever people have created daemon processes that detect

changes and automatically recompile, however you need to make sure it is running and

also there can be a delay. The approach of this library is to have the compile step happen

when the request is made to the server for the CSS file. It doesn’t require you to set up a

daemon process on your local environment (and destination server if you make quick

fixes on the server). Caching speeds up subsequent CSS requests so compiles happen

only when needed.

Another advantage is the syntax is made to resemble PHP as much as possible. The

syntax is simple and allows for an easy learning curve. I personally think some of the

features of LESS and SASS overly complicate CSS development with things like mixins,

etc.

This library is another option you can add to your toolkit (or not). It is open source and

free to use and modify if you desire. I hope you find it as useful as I have.

Page 6 of 17

Tips and Usage

 Place these three files in any directory containing CSS:

 css/.htaccess
 css/css-filter-start.php
 css/css-filter-end.php

 If you have your CSS files spread across a hierarchy of folders as in:

css/main.css

css/theme/blue-sky/theme.css

…

you must put the three files mentioned above in all directories containing a css file. The

reason is that the .htaccess file applies to the current directory and all sub-directories and

adds the handler (css-filter-start.php) using a relative path. An alternative is to change the

relative path to a full path, then you only need the three files in the root directory. This

requires that you know the file system path to your css folder. Here are the contents of an

altered .htaccess file:

<IfModule mod_mime.c>

AddHandler application/x-httpd-php .css

Options Indexes FollowSymLinks Includes ExecCGI

Action application/x-httpd-php "/php/php.exe"

AddType application/x-httpd-php .css

php_value auto_prepend_file /home/domain/public_html/css/css-filter-start.php

php_value auto_append_file /home/domain/public_html/css/css-filter-end.php

php_flag zlib.output_compression On

</IfModule>

 You don’t need to modify any of your existing CSS, JavaScript, or image files to use

these scripts.

 Note that you may have to turn off comment_compress in css/css-filter-start.php if you

are using browser specific hacks (e.g. Holly Hack). See the “Customizing” section

below. These settings can now be overridden in the CSS URL.

 When using the expanded syntax for CSS below, statements must be separated by either

a new line and/or a semicolon (;).

 These scripts set the expires header to 1 year by default. To force a download of a

modified CSS, JavaScript, or image file you need to either change the name of the file or

add a parameter as in:

<link type=“text/css” rel=“stylesheet” src=“css/main.css?version=1.1” />
-or-

<link type=“text/css” rel=“stylesheet” src=“css/main_1_1.css” />

Page 7 of 17

 When debugging, add “?compress_comments=false” to the end of your CSS URL. All

error messages are put into the CSS as comments. Leaving the default settings, these
comments will be stripped out. Here is an example:

<link type=“text/css” rel=“stylesheet” src=“css/main.css?compress_comments=false” />

Page 8 of 17

Customizing

At the top of css-filter-start.php script are variables that control the behavior of the

Dynamic CSS replacement. Here is a description of the current variables:

$debug – setting to true will output debug comments of the form /* debug */ in

the output CSS. This setting is useful if trying to debug an issue with this filter. It defaults

to false.

$cache – setting to true will save the processed output to a subdirectory called

cache. If the directory does not exist it will be created. Subsequent requests will return

the cached file for the CSS file with the same parameters passed. This is to improve

performance and defaults to true.

$allow_eol_comments – if set to true, will allow comments starting with // and

run to the end of line. It defaults to true.

$compress – if set to true will remove extra whitespace. It will leave a newline

after each definition (after each } curly brace) for readability. This setting defaults to

true.

$compress_comments – removes all comments (regular and end-of-line if

enabled). This defaults to true.

$handle_pngs – will add the alpha filter if the browser’s UserAgent identifies

itself as IE5.5/IE6. For older versions of IE the .png will be replaced with .gif or ..png8

(see $convert_to_png8). If the .gif or .png8 file doesn’t exist, it will be created on the

server as long as you have the GD2 image library installed on your server. This setting

defaults to true. Warning: Setting this value to true will turn off caching.

$use_alpha_filter – if you want to use Internet Explorer’s alpha filter for versions

IE5.5/IE6. If you would rather replace the .png with a .gif/.png8 the set this value to false.

This setting defaults to false.

$filter_sizing_method – if you want the filter to crop the image to fit the

dimensions of the container use ‘crop’. To have the image resize to fit the dimensions use

‘scale’. To leave the image alone with an expanding border as needed use ‘image’. This

setting defaults to ‘scale’.

$convert_to_png8 – png8 is an indexed 8 bit color version of the PNG format. It

is similar to GIF and displays with transparency in older browsers. It does not support

alpha transparency though. This setting defaults to true.

▪ You can override these settings by passing the parameters on the CSS URL set as true

or false. For example:

<link type=“text/css” rel=“stylesheet” src=“css/main.css?compress_comments=false” />

Page 9 of 17

@include

 @include ‘file.css’ [;]
 @include url(‘file.css’) [;]

Both forms are equivalent. The syntax mimics the @import command.

This command is like @import except it includes the CSS on the server. The @include

may also be on any line within your CSS file. The text from the included CSS file will be

added in place. You can nest @includes as well.

main.css:

body {
 color: #000;
 background-color: #CCC;

@include ‘includes/second.css’
}

includes/second.css:

@include ‘includes/third.css’
padding: $padding;

includes/third.css:

text-decoration: none;
set $padding = 5em;

Will send the following to the browser when main.css is requested:

body {
 color: #000;
 background-color: #CCC;
 padding: 5em;
 text-decoration: none;
}

Page 10 of 17

Variables

 set $name = value [;]
 eval $name = expression [;]

Variables are treated as PHP variables. Strings can be surrounded with quotes but the

quotes will be removed when the value is substituted. If you need surrounding quotes

(this does not include internal quotes), add an extra set of quotes. For example:

 set $font-family = “Courier New”, Courier, monotype;
 font-family: $font-family; // OK – quotes will not be stripped

 set $main-font = “Courier New”;
 font-family: $main-font, Courier, monotype; // NOT OK – quotes will be stripped

 set $main-font = ‘“Courier New”’;
 font-family: $main-font, Courier, monotype; // OK – quotes will not be stripped

Use the set command to set a static string to a variable. Use the eval command to assign

the output of the expression to a variable. The eval command is a good way to bridge to

PHP since PHP’s variables like $_GET, $_POST, $_REQUEST, $_SERVER,

$_COOKIES are not directly usable as variables in the CSS file.

The optional semicolon at the end of the set and eval statements will be removed.

Variables can be delimited with curly brackets to avoid ambiguity in your CSS.

Delimited variables are treated slightly differently in that they are substituted before

expressions are evaluated (via PHP). Here is an example of using delimited variables to

avoid ambiguity:

 set $margin = 20px;
 set $margin-left = 10px;

 #main {
 margin: $margin;
 margin-left: ${margin-left}; // to avoid expanding to 20px-left;
 }

Variables can be added anywhere in the CSS and will be expanded when output. Here are

some examples of setting a variable:

 set $default-color = #0fd98e;
 set $color = $default-color;

 div.side { color: $color; } // color: #0fd98e;

Page 11 of 17

An example setting a variable based on the output from a PHP eval():

 eval $user_agent = $_SERVER[‘HTTP_USER_AGENT’];
if (strstr($user_agent, ‘Mac’) !== false)
 // Dynamic behavior like this should be avoided because of caching.
 // A better approach would be to pass the dynamic variable on

 // the css <link/> as an argument:
// href=“main.css?user_agent=<?=$_SERVER[‘HTTP_USER_AGENT’]?>”

endif

// A more practical example
set $width = 1000;
set $number-of-sections = 4;

// note the delimiters are needed on the second variable since the ‘-‘ would be
// evaluated as a minus sign otherwise.
eval $section-width = $width / ${number-of-sections};

#section-1 {
 width: ${section-width}px; // need delimiters here to avoid ambiguity
}
#section-2 {
 width: ${section-width}px;
}
#section-3 {
 width: ${section-width}px;
}
#section-4 {
 width: ${section-width}px;
}

Page 12 of 17

Using PHP Variables

Passing variables to CSS:

<link type=“text/css” rel=“stylesheet” src=“css/main.css?theme=blue” />

Passed variables are added to the variables available within the CSS file. It also has the

added advantage of creating a separate cache file which avoids the problem mentioned in

the previous section.

main.css:

#main {
if ($theme == ‘blue’)

color: white;
background-color: blue;

else
color: black;
background-color: white;

endif
}

PHP has global variables defined (see PHP documentation for more details):

$_SERVER
$_GET
$_POST
$_FILES
$_REQUEST
$_SESSION
$_ENV
$_COOKIE

You can access these variables in conditionals and using eval. Caution be used when

accessing PHP’s predefined variables especially due to the caching issues. Variables and

variable substitution are not handled by PHP so the following will not work:

body
{
 background-color: $_COOKIE['background_color'];
 color: $_COOKIE['color'];
 font: normal 75%/1.3em Verdana, Geneva, Helvetica, sans-serif;
 text-align: center;
}

http://php.net/manual/en/reserved.variables.server.php
http://php.net/manual/en/reserved.variables.get.php
http://php.net/manual/en/reserved.variables.post.php
http://php.net/manual/en/reserved.variables.files.php
http://php.net/manual/en/reserved.variables.request.php
http://php.net/manual/en/reserved.variables.session.php
http://php.net/manual/en/reserved.variables.environment.php
http://php.net/manual/en/reserved.variables.cookies.php

Page 13 of 17

By setting a variable using the eval command, the following will work:

eval $background_color = $_COOKIE['background_color'];
eval $color = $_COOKIE['color'];
body
{
 background-color: $background_color;
 color: $color;
 font: normal 75%/1.3em Verdana, Geneva, Helvetica, sans-serif;
 text-align: center;
}

Since expression are evaluated using PHP, you can use the server variables in if and elif

/elseif expressions:

body
{
if ($_COOKIE[‘theme’] == ‘blue’)
 color: #FFF;
 background-color: #03C;
else
 color: #000;
 background-color: #CCC;
endif
}

Page 14 of 17

Expressions

 eval expression [;]
 eval $variable = expression [;]
 if (expression) [;]
 elseif (expression) [;]
 elif (expression) [;]

Expressions are evaluated using PHP. This means you have the full PHP syntax available

to you in these statements.

The first form of the eval command passes off the expression to PHP for execution but

ignores any result. The second form not only passes an expression off to the PHP engine

for evaluation but also assigns any returned value to $variable cast as a string.

Delimitted variables (surrounded by {}) are substituted first. This means variables behave

differently when used in expressions depending if they are delimited or not. Expressions

are then passed to PHP for evaluation. Conditionals (if, elseif) have the return result cast

to a boolean.

Here are some examples:

set $valid_php_variable = #FCDEFA;
set $bad-php-variable = ‘not good’;

if ($valid_php_variable == ‘#FCDEFA’)

// OK – expression evaluates to true
endif

if (${bad-php-variable} == ‘not good’)

// OK – variable substitution is made before PHP evaluates expression
endif

if ($bad-php-variable == ‘not good’)

// FAILS – PHP treats the ‘-‘ in the variable name as a minus
// results in (0 == ‘not good’)

endif

eval $bad_result = $bad-php-variable; // = 0 because ‘-‘ are treated as minus

eval $good_result = ${bad-php-variable} . ‘ - great!’; // = ‘not good – great! ‘

Page 15 of 17

Conditional Logic

 if (expression) [;]
 elif (expression) [;] –or– elseif (expression) [;]
 else [;]
 endif [;]

Conditional logic works similar to most languages. elif and elseif are the same function,

use whichever is you feel more comfortable with.

Here is an example:

set $default_color = #FCDEFA;
set $default_background_color = #1D3C66;

body {
if ($theme == ‘dark’)

color: #999;
background-color: #000;

 elseif ($theme == ‘light’)
color: #000;
background-color: #FFF;

 else
 color: $default_color;
 background_color: $default_background_color;

endif
}

Theme in this case could be set at the top of the CSS file or passed in on the HTML as a

parameter:

<link href=”main.css?theme=dark" rel="stylesheet" type="text/css" />

You can also nest if/elseif/else logic as deep as you like. Just be sure to terminate each

nested if with and endif.

Page 16 of 17

Modifying Headers

 set-header header_information [;]
expires

immediate | yesterday
now
n minute[s]
n hour[s]
n day[s]
n week[s]
n month[s] (approximate)
n year[s]

You can modify any header sent to the browser using the first form. An example using

variable substitution and conditional logic:

 eval $agent = $_SERVER[‘HTTP_USER_AGENT’];
 set $header = Vary: Accept-Encoding;
 if (stristr(‘$agent’, ‘msie’) !== false)
 set-header $header;
 endif

The expires command sets the expiration of the CSS file. This tells the browser when to

next download this file. Note if you set a far expires date (e.g. expires 1 year), you cannot

force a refresh by setting an expires immediate. This is because the browser may not even

request that CSS file until it expires (e.g. a year later).

Page 17 of 17

Automatic Background Image Conversion for IE6

Any background image that uses a png image will be either converted to a gif or png-8

depending on the setting of $convert_to_png8. If the corresponding gif/png8 file does not

exist, a new image will be created from the background png image. The directory where

your background images reside must be writable for this to work. You also should turn

off caching when testing as the conversion won’t take place if the CSS file has been

cached.

The matte color (for areas where there is alpha transparency) defaults to #fff. If you have

a different color background, you can set the matte color using the following syntax:

 matte-color: #{3 hex color code} | #{6 hex color code} [;]

Here is an example:

 matte-color: #ab90ff;
 background: url(‘../images/xyz.png’) 0 0 no-repeat;
 …

The matte color will be used from then on for all further conversions so you don’t need to

keep reissuing the command before all background images. If your matte changes, then

of course you need to reissue the matte-color command with the new value.

